БИОЛОГИЧЕСКИЕ РЕСУРСЫ

Оригинальная научная статья УДК 633.11: 631.559.2: 631.811.1:631.841.7 https://doi.org/10.26897/2949-4710-2025-3-1-1-03

Промежуточные результаты изучения влияния капсулированного карбамида на урожайность и эффективность использования азота яровой пшеницей

Дарья Андреевна Баюрина, Всеволод Михайлович Лапушкин

Российский государственный аграрный университет – МСХА имени К.А. Тимирязева: г. Москва, Россия

Автор, ответственный за переписку: Всеволод Михайлович Лапушкин; lapushkin@rgau-msha.ru

Аннотация

Применение азотных удобрений сопряжено с существенными потерями азота, в результате чего коэффициент его использования в полевых условиях редко превышает 50%. Капсулирование удобрений способно снизить непроизводительные потери азота, повысить коэффициент его использования и урожайность сельскохозяйственных культур. В статье приведены промежуточные результаты многолетних исследований эффективности капсулированного карбамида. В условиях полевого опыта на дерново-подзолистой легкосуглинистой почве показано, что применение мочевины с минеральным покрытием гранул обеспечивало более высокий уровень азотного питания растений. Это способствовало повышению урожайности яровой пшеницы на 6-12% относительно обычного удобрения, увеличению хозяйственного выноса азота на 6-11% и коэффициента использования азота на 8-16%. В модельном лабораторном опыте установлено, что при поверхностном применении мочевины потери аммиака на 3-5-е сутки снижались на 27-17% на кислой почве и на 63-38% — на известкованной, и как следствие — содержание минеральных форм азота в почве при применении карбамида с покрытием было выше на 28-30%.

Ключевые слова

яровая пшеница, карбамид, мочевина, урожайность, коэффициент использования, вынос, аммонификация, нитрификация, потери азота

Благодарности

Работа выполнена за счет средств Программы развития университета в рамках Программы стратегического академического лидерства «Приоритет-2030».

Для цитирования

Баюрина Д.А., Лапушкин В.М. Промежуточные результаты изучения влияния капсулированного карбамида на урожайность и эффективность использования азота яровой пшеницей // *Тимирязевский биологический журнал*. 2025. Т. 3, № 1. С. 202531103. https://doi.org/10.26897/2949-4710-2025-3-1-1-03

BYOLOGICAL RESOURCES

Research article

https://doi.org/10.26897/2949-4710-2025-3-1-1-03

Interim results of the study of the effect of coated urea on yield and nitrogen use efficiency of spring wheat

Darya A. Bayurina, Vsevolod M. Lapushkin

Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia

Corresponding author: Vsevolod M. Lapushkin; lapushkin@rgau-msha.ru

Abstract

Nitrogen fertilizer use is often accompanied by significant nitrogen losses, resulting in a field-level utilization coefficient that rarely exceeds 50%. Fertilizer encapsulation offers a strategy to reduce these unproductive nitrogen losses, potentially increasing both the utilization coefficient and crop yields. This article presents interim results from long-term studies evaluating the effectiveness of coated urea. A field experiment conducted on sod-podzolic light loamy soil demonstrated that urea with a mineral coating enhanced nitrogen nutrition in plants. This resulted in a 6-12% increase in spring wheat yield

compared to conventional fertilizer, a 6-11% increase in economic nitrogen removal, and an 8-16% increase in the nitrogen utilization coefficient. A model laboratory experiment revealed that surface application of coated urea reduced ammonia losses by 27-17% on acidic soil and by 63-38% on limed soil during the 3rd-5th day after application. Consequently, the content of mineral nitrogen forms in the soil was 28-30% higher when using coated urea.

Keywords

spring wheat, urea, carbamide, yield, utilization coefficient, removal, ammonification, nitrification, nitrogen losses

Conflict of interests

The authors declare no relevant conflict of interests.

Acknowledgments

This work was funded by the special project of University development within "Strategic Academic Leadership Program 'Priority 2030."

For citation

Bayurina D.A., Lapushkin V.M. Interim results of the study of the effect of coated urea on yield and nitrogen use efficiency of spring wheat. *Timiryazev Biological Journal*. 2025;3(1):202531103. http://doi.org/10.26897/2949-4710-2025-3-1-1-03

Введение

Introduction

Азотные удобрения стабильно занимают лидирующие позиции по объемам производства и применения как в мире, так и в нашей стране. По данным Российской ассоциации производителей удобрений (РАПУ), на долю азотных удобрений в 2023 г. приходилось 48% (12,5 млн т д.в.) [1]. Карбамид, или мочевина, является самым распространенным азотным удобрением в мире, на ее долю приходится около 50% всего внесенного азота. В Китае, Индии и Бразилии она занимает 1-е место по применению, в США несколько уступает жидкому аммиаку и карбамидно-аммиачным смесям, а в европейских странах и в России уступает аммиачной селитре [2]. В нашей стране ее ежегодное производство в среднем за последние 5 лет составляло 8,8 млн т в физическом весе и уступало только аммиачной селитре (10,4 млн т) [1].

Стабильная в обычных условиях мочевина при внесении в почву, под действием фермента уреаза, подвергается гидролизу и превращается в углекислый аммоний, который, являясь химически неустойчивым соединением, разлагается до бикарбоната аммония и газообразного аммиака. В щелочных почвах дальнейшему разложению может подвергаться и бикарбонат аммония. Таким образом, применение карбамида может сопровождаться существенными потерями газообразного аммиачного азота, которые, по данным некоторых исследователей, могут достигать 60% и более [3, 4]. В среднем при обычных способах предпосевного внесения карбамида глубина заделки основной массы удобрения не превышает 5-6 см, что согласно данным литературы является недостаточным для полного поглощения выделяющегося аммиака почвенными коллоидами [5, 6]. Поэтому потери азота в форме аммиака в среднем оцениваются почти в 15-40% [3, 6, 7]. Особенно большие потери аммиака наблюдаются при поверхностном внесении карбамида, в условиях повышенных температур, в почвах с щелочной реакцией среды, а также при известковании [4, 6, 8].

Также образовавшийся аммонийный азот подвергается нитрификации с образованием азотной кислоты, а в дальнейшем – и денитрификации, в результате которой в атмосферу улетучиваются газообразный азот (N_2) и его оксиды (N_2O, NO) , что приводит к потерям и снижению эффективности азотных удобрений [7]. В целях снижения потерь азота и повышения эффективности применения карбамида в настоящее время выпускают стабилизированную ингибиторами уреазы и нитрификации мочевину. По данным ряда авторов, применение ингибиторов нитрификации обеспечивает прибавку урожайности различных культур – от 6 до 62% [3, 4, 9-12]. Использование ингибиторов уреазы позволяет существенно снизить газообразные потери аммиака и на 6-13% увеличить потребление азота сельскохозяйственными культурами [4, 9, 10, 12].

Наиболее современным способом повышения эффективности применения азотных удобрений является их капсулирование [12-16]. Нанесение на поверхность гранул различных покрытий, в зависимости от их состава и толщины, позволяет варьировать скоростью высвобождения элементов питания из состава удобрения, оптимизировать минеральное питание растений в отдельные фазы развития и обеспечить прирост урожайности различных сельскохозяйственных культур на 5-15% [12, 13, 15-17].

Целью работы стала оценка эффективности применения капсулированного карбамида при выращивании яровой пшеницы. В задачи исследований входило: в условиях полевого опыта изучить динамику формирования биомассы и обеспеченности растений азотом; оценить влияние капсулированного карбамида на урожай зерна яровой пшеницы; определить вынос элементов питания урожаем и коэффициенты использования азота из удобрений; в условиях лабораторного опыта оценить

размеры газообразных потерь аммиака и динамику содержания минерального азота в почве при поверхностном внесении карбамида.

Методика исследований Research method

Исследования проводили в условиях мелкоделяночного полевого опыта на полевой опытной станции РГАУ-МСХА имени К.А. Тимирязева. Почва опытного участка — дерново-подзолистая легкосуглинистая, ее агрохимическая характеристика представлена в таблице 1.

В полевом опыте действие карбамида с минеральным покрытием на основе ортофосфата кальция толщиной 50 и 100 мкм, произведенного АО НИУФ имени профессора Я.В. Самойлова [16], и карбамида с полимерным покрытием Ruscote сравнивали с действием обычной мочевины. Схема опыта состояла из 5 вариантов, эффективность удобрений изучали на фоне внесения небольшого количества фосфора в форме монокальцийфосфата для компенсации фосфора, внесенного в состав минерального покрытия: 1. Фон (P); 2. Фон + Nм мочевина без покрытия; 3. Фон + Nм 50 мкм - мочевина с минеральным покрытием МКФ (монокальцийфосфат) толщиной 50 мкм; 4. Фон + Nм 100 мкм – мочевина с минеральным покрытием $MK\Phi$ толщиной 100 мкм; Φ он + Nм Ruscote – мочевина с полимерным покрытием. Общая площадь делянки $-1,96 \text{ м}^2$, учетная $-1,44 \text{ м}^2$, повторность опыта – 5-кратная.

Внесение и заделку удобрений в почву осуществляли вручную 15 мая из расчета 9 г азота на 1 м² (90 кг/га). Ввиду дополнительного поступления фосфора в состав минеральной оболочки гранул все варианты опыта были выровнены по внесению P_2O_5 5,2 г/м² — путем внесения однозамещенного фосфата кальция. Посев проводили селекционной сеялкой 16 мая, убирали урожай вручную в фазе восковой спелости 5 августа. Опытная культура — пшеница яровая (*Triticum aestivum* L.) сорта Любава.

В течение вегетации отбирали растительные и почвенные образцы для проведения диагностики азотного питания [18, 19]. Химические анализы проводили по общепринятым методикам.

Лабораторные опыты по изучению размеров газообразных потерь аммиачного азота и превращения карбамида в почве проводили на кафедре агрономической, биологической химии и радиологии на кислой и известкованной дерново-подзолистой легкосуглинистой почве. Опыты проводили в герметичных сосудах, в которые помещали навеску почвы и удобрения из расчета 150 мг N/кг и компостировали в течение 3, 5 и 7 суток при температуре +20°С. Выделившийся аммиак улавливали 0,01 н раствором серной кислоты и оттитровывали 0,01 н раствором гидроксида натрия. В этих же образцах определяли содержание аммонийного и нитратного азота фотометрическими методами.

Результаты полевого опыта обрабатывали методом однофакторного дисперсионного анализа с использованием MS Excel.

Таблица 1 **Агрохимическая характеристика дерново-подзолистой легкосуглинистой почвы**

Гумус	pH _{KCl}	Нг	S	Т	V	P_2O_5	K ₂ O	N _{мин}	
%	_		мг-экв/100 г		%	мг/кг			
ГОСТ 26213-2021	ГОСТ 26483-85	ГОСТ 26212-2021	ГОСТ 27821-2020	-	-	ГОСТ Р 54650-2011		ГОСТ 26489-85 ГОСТ 26951-86	
3,01	5,22	2,49	11,2	13,7	82	317	122	27	

Table 1
Agrochemical characteristics of sod-podzolic light loamy soil

Organic carbon (C)	рН _{ксі}	На	S	T	V	P_2O_5	K ₂ O	N_{min}
%	_	cmol _c kg ⁻¹			%	mg kg ⁻¹		
State standard 26213-2021	State standard 26483-85	State standard 26212-2021	State standard 27821-2020		-	State standard 54650-2011		State standard 26489-85 26951-86
3.01	5.22	2.49	11.2	13.7	82	317	122	27

Погодные условия в период проведения исследований несколько отличались от среднемноголетних значений (табл. 2). Среднесуточная температура воздуха почти на протяжении всего вегетационного периода пшеницы превышала среднемноголетнюю примерно на 3°С, за исключением второй декады мая, третьей декады июля и первой декады августа. Самым теплым месяцем был июль, когда средняя температура воздуха составляла 22,4°С. Наименьшее значение среднесуточной температуры воздуха пришлось на вторую декаду

мая -11,6°C, что меньше среднемноголетних значений на 1.8°C.

После посева наблюдался существенный дефицит влаги: во II-III декадах мая сумма осадков была ниже среднемноголетних данных на 70% (табл. 2). Июнь был самым влажным месяцем: сумма осадков составила 166 мм, что превышает среднемноголетние значения в 2 раза. Таким образом, вегетационный период в 2024 г. оказался теплее на 17,1°С и более влажным на 73 мм по сравнению со средними многолетними показателями.

Таблица 2 Погодные условия в период проведения полевого опыта

M	Декада -	Среднесуточн	ая температура, °С	Сумма осадков, мм		
Месяц	декада	2024 г.	Среднемноголетняя	2024 г.	Среднемноголетняя	
3.6 ×	II	11,6	13,4	4	18	
Май	III	19,3	15,3	9	26	
	I	20,1	16,2	51	23	
Июнь	II	20,1	17,7	107	25	
	III	20,0	18,4	8	30	
	I	24,2	19,0	29	24	
Июль	II	23,3	20,2	29	32	
	III	19,8	20,3	35	27	
Август	I	18,5	19,3	24	18	

Table 2

Weather conditions during the field experiment

Month	Decade -	Average dail	y temperature, °C	Total precipitation, mm			
Month	Decade	2024	Average perennial	2024	Average perennial		
М	II	11.6	13.4	4	18		
May	III	19.3	15.3	9	26		
	I	20.1	16.2	51	23		
June	II	20.1	17.7	107	25		
	III	20.0	18.4	8	30		
	I	24.2	19.0	29	24		
July	II	23.3	20.2	29	32		
	III	19.8	20.3	35	27		
August	I	18.5	19.3	24	18		

Результаты и их обсуждение Results and discussion

Во время проведения полевого опыта в основные фазы развития растений отбирали растительные образцы для учета темпов накопления биомассы яровой пшеницей. Как следует из результатов (рис. 1), преимущество капсулированных удобрений проявлялось в большей мере в фазу колошения-цветения, когда наблюдается максимальный период питания и накопления сухого вещества.

Биомасса растений в фазу колошения-цветения в вариантах с минеральными покрытиями была на 32-49% выше относительно обычного карбамида, что могло явиться следствием того, что между фазами выхода в трубку и колошения-цветения происходило наибольшее потребление азота растениями из удобрений. Данное предположение подтверждается результатами почвенной

и растительной (тканевой и фотометрической) диагностики азотного питания растений (табл. 3).

Результаты почвенной диагностики показали, что обеспеченность растений минеральным азотом в фазе колошения в вариантах с применением удобрений с минеральными покрытиями была выше на 64% по сравнению с обычной мочевиной. Несмотря на то, что в варианте с применением карбамида с полимерным покрытием содержание азота было заметно выше, он, по всей видимости, не был доступен для растений, что подтверждается результатами тканевой и фотометрической диагностики. Наиболее высокая обеспеченность растений азотом, по данным растительной диагностики, наблюдалась в варианте с внесением карбамида с покрытием фосфатом кальция толщиной 100 мкм.

Результаты корреляционного анализа показали, что наиболее тесная связь отмечалась между урожайностью и содержанием в растениях нитратного азота (r = 0.87-0.94).

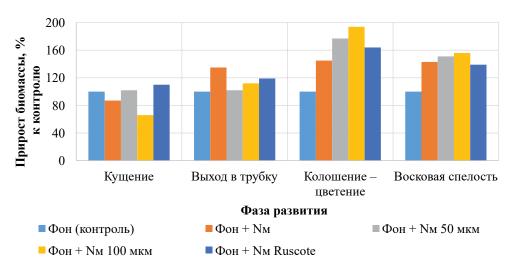


Рис. 1. Темпы накопления биомассы растениями яровой пшеницы при применении разных форм карбамида

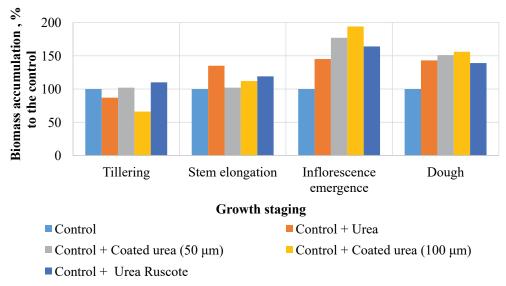


Fig. 1. Rates of biomass accumulation by spring wheat plants when using different forms of urea

 Таблица 3

 Обеспеченность растений азотом в течение вегетации

	Содержание азота в слое почвы 0-20 см			Результаты растительной диагностики							
Вариант	N-NH ₄ ⁺	N-NO ₃	N _{мин}	Кущение	Выход в трубку	Колошение	Кущение	Выход в трубку	Колошение		
	мг/кг			Ба.	плы по Цеј	рлинг	N- тестер				
Фон	7	7	13	1,3	0,7	0,3	322	291	324		
$\Phi_{OH} + N_M$	7	7	14	3,0	2,8	1,8	308	306	417		
Фон + Nм 50 мкм	12	12	23	3,0	2,8	1,8	358	350	390		
Фон + Nм 100 мкм	11	13	23	3,0	3,0	2,0	372	353	439		
Фон + Nм Ruscote	26	8	33	1,8	1,2	1,1	310	330	360		
r*	0,17	0,71	0,41	0,89	0,87	0,94	0,52	0,84	0,79		

r* - коэффициент корреляции между показателем и урожайностью яровой пшеницы.

Table 3

Provision of plants with nitrogen during the growing season

	Nitrogen content in the soil			Results of plant diagnostics						
Treatments	N-NH ₄ ⁺	N-NO ₃ -	N _{min}	Tillering	Stem elongation	Inflorescence emergence	Tillering	Stem elongation	Inflorescence emergence	
	mg kg ⁻¹				Zerling sco	ores	N- tester			
Control	7	7	13	1.3	0.7	0.3	322	291	324	
Control + Urea	7	7	14	3.0	2.8	1.8	308	306	417	
Control + + Coated urea (50 μm)	12	12	23	3.0	2.8	1.8	358	350	390	
Control + + Coated urea (100 μm)	11	13	23	3.0	3.0	2.0	372	353	439	
Control + Urea Ruscote	26	8	33	1.8	1.2	1.1	310	330	360	
r*	0.17	0.71	0.41	0.89	0.87	0.94	0.52	0.84	0.79	

r – correlation coefficient between the indicator and the spring wheat yield

Результаты учета структуры урожая показали, что азотные удобрения способствовали увеличению длины растений и колосьев на 8-13 и 16-28%, соответственно. Масса колоса возрастала на 49-70%, а масса зерна с одного колоса — на 51-73%, при этом число зерен с колоса увеличилось на 32-47%. Азотные удобрения во всех вариантах дали достоверную прибавку урожая зерна яровой пшеницы относительно фонового варианта, и их применение способствовало повышению урожайности в 1,4-1,6 раза (табл. 4).

Использование минерального покрытия на карбамиде с толщиной покрытия 50 мкм способствовало увеличению числа продуктивных стеблей на 8%, и как следствие — получению достоверной прибавки урожайности относительно варианта с классической мочевиной. Применение более толстого покрытия (100 мкм) не приводило к повышению эффективности удобрения. Покрытие гранул карбамида монокальцийфосфатом обеспечило получение прибавки урожая зерна на 6-12% относительно обычного карбамида.

На основе содержания элементов питания в растениях был рассчитан их вынос зерном и соломой. Соотношение элементов питания в выносе соответствовало средним значениям для яровой пшеницы: 2,5-3: 1: 1,5-2,2, что говорит о сбалансированности минерального питания. Нанесение минеральных покрытий на карбамид увеличивало хозяйственный вынос азота на 7-11% (табл. 5), причем наибольший вынос наблюдается в варианте с покрытием 50 мкм.

Рассчитанный на основе хозяйственного выноса питательных веществ коэффициент использования азота показал, что эффективность усвоения азота из состава удобрений с минеральным покрытием была на 8 и 16% выше, соответственно, для толшины 50 и 100 мкм.

Из данных литературы следует, что размеры потерь аммиака при применении карбамида возрастают на щелочных и известкованных почвах [2, 4, 6]. Поэтому в лабораторном опыте интенсивность выделения NH_3 изучали на кислой ($pH_{KCl} = 4,34$) и известкованной ($pH_{KCl} = 5,50$) дерново-подзолистой легкосуглинистой почве (рис. 2).

В опыте на кислой дерново-подзолистой почве было установлено, что в первые 3, 5 и 7 сутки эксперимента потери азота при применении капсулированного карбамида были на 27, 17, 18% ниже соответственно. На известкованной дерново-подзолистой почве снижение потерь азота при использовании минерального покрытия было более существенным и составляло 63, 38 и 5% соответственно.

Таблица 4 Влияние разных форм карбамида на формирование элементов структуры урожая яровой пшеницы

Вариант	Длина растения, см	Длина колоса, мм	Масса колоса, г	Масса зерна с 1 колоса, г	Озернен- ность колоса, шт.	Надземная масса, г/м²	Масса зерна, г/м²	Масса побочной продукции, г/м²	Масса 1000 зерен, г
Фон	78	67	0,70	0,55	19	862	370	492	30,1
Фон + Мм	84	80	1,09	0,88	26	1133	528	606	34,6
Фон + + Nм 50 мкм	86	84	1,13	0,91	25	1262	593	669	36,9
Фон + + Nм 100 мкм	88	86	1,19	0,95	28	1178	559	619	34,2
Фон + + Nм Ruscote	85	78	1,04	0,83	28	1072	504	568	29,9
HCP ₀₅	4	7	0,11	0,08	4	64	40	59	3,4

Urea form effects on spring wheat crop structure

Treatments	Plant length, cm	Ear length, mm	Ear weight, g	Grain weight from one ear, g	Ear grain content, pcs	Above ground mass, g/m²	Grain weight, g/m ²	Mass of straw, g/m ²	Thousand- kernel weight, g
Control	78	67	0.70	0.55	19	862	370	492	30.1
Control + Urea	84	80	1.09	0.88	26	1133	528	606	34.6
Control + Coated urea (50 μm)	86	84	1.13	0.91	25	1262	593	669	36.9
Control + Coated urea (100 μm)	88	86	1.19	0.95	28	1178	559	619	34.2
Control + Urea Ruscote	85	78	1.04	0.83	28	1072	504	568	29.9
LSD ₀₅	4	7	0.11	0.08	4	64	40	59	3.4

202531103 7

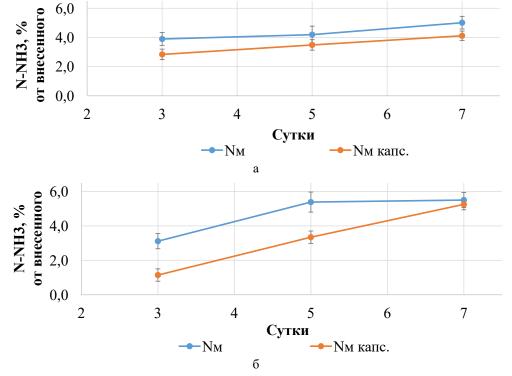

Table 4

Таблица 5 Вынос элементов питания яровой пшеницей и коэффициент использования азота

Вапиант	Хозяйс	гвенный вын	нос, г/м²	Удел	, кг/т	киуп	
Вариант	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	%
Фон	8,5	3,6	6,1	23,0	9,7	16,5	_
Фон + Мм	14,2	5,8	8,6	26,9	11,0	16,3	64
Фон + Nм 50 мкм	15,7	6,2	10,2	26,5	10,5	17,2	80
Фон + Nм 100 мкм	15,0	6,3	9,0	26,8	11,3	16,1	72
Фон + Nм Ruscote	13,1	5,4	8,6	26,0	10,7	17,1	51

Table 5
Nutrient removal in spring wheat and nitrogen utilization rate

Tuestments	Nutrient re	emoval by ha	arvest, g/m²	Specific 1	nutrient rem	oval, kg/t	NUE
Treatments	N	P ₂ O ₅	K ₂ O	N	P ₂ O ₅	K ₂ O	%
Control	8.5	3.6	6.1	23.0	9.7	16.5	_
Control + Urea	14.2	5.8	8.6	26.9	11.0	16.3	64
Control + Coated urea (50 μm)	15.7	6.2	10.2	26.5	10.5	17.2	80
Control + Coated urea (100 μm)	15.0	6.3	9.0	26.8	11.3	16.1	72
Control + Urea Ruscote	13.1	5.4	8.6	26.0	10.7	17.1	51

Рис. 2. Потери аммиачного азота на кислой (а) и известкованной (б) дерново-подзолистой почве при поверхностном внесении карбамида

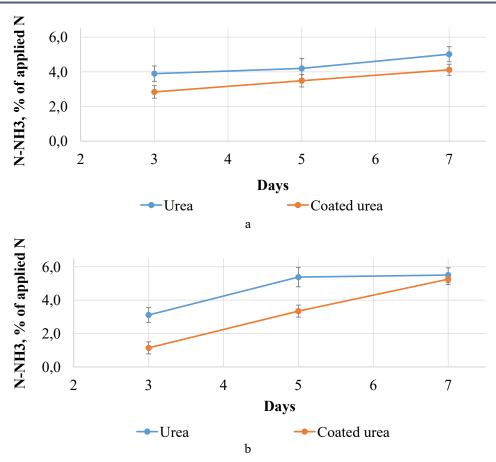
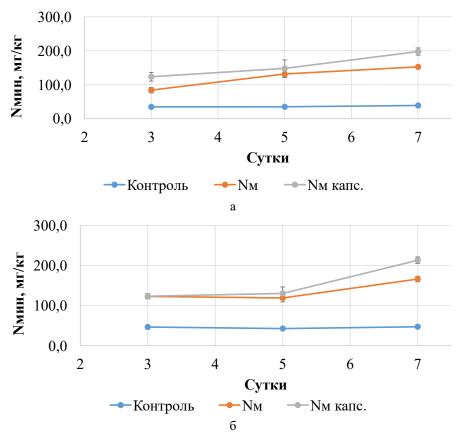



Fig. 2. Ammonia volatilization from urea on acidic (a) and limed (b) sod-podzolic soil

Рис. 3. Содержание минеральных форм азота в кислой (а) и известкованной (б) дерново-подзолистой почве при поверхностном внесении карбамида

Благодаря снижению газообразных потерь, содержание минеральных форм азота в почве было выше при применении капсулированного карбамида (рис. 3).

Как следует из представленных на рисунке 3 данных, после 7 суток компостирования содержание минерального азота в кислой почве было на 30%, а в известкованной — на 28% выше при применении капсулированной мочевины. Это подтверждает результаты почвенной и растительной диагностики в полевом опыте и гипотезу о том, что данное покрытие способствует снижению потерь аммиака и сохранению в почве большего количества азота в доступной для растений форме.

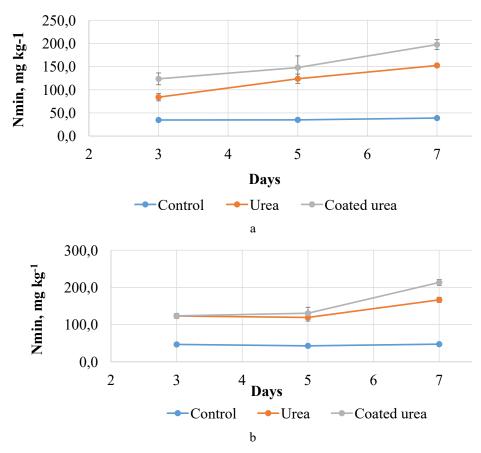


Fig. 3. Mineral nitrogen in acidic (a) and limed (b) sod-podzolic soil with surface application of urea

Выводы Conclusions

Таким образом, проведенные исследования показали, что покрытие гранул карбамида фосфатом кальция обеспечивало существенное снижение газообразных потерь азота удобрений в первые 3-5 суток на 17-63%, и как следствие более высокое содержание минеральных форм азота в почве в течение вегетации, что подтверждается результатами почвенной и растительной диагностики. Усиление азотного питания при применении мочевины с минеральным покрытием способствовало получению дополнительной прибавки урожайности до 12% относительно обычного карбамида. Нанесение минеральных покрытий на карбамид увеличивало хозяйственный вынос азота на 7-11% и повышало коэффициент использования азота на 8-16%, что говорит о более полном потреблении азота яровой пшеницей и высокой эффективности изучаемых удобрений.

Список источников

1. Российская ассоциация производителей удобрений (РАПУ). URL: https://rapu.ru/analitics/ (дата обращения: 06.02.2025)

References

Russian Fertilizers Producers
 Association (RFPA). (In Russ.) URL:
 https://rapu.ru/analitics/ (accessed: April 06, 2025)

- 2. International Fertilizer Association (IFA). URL: https://www.fertilizer.org/ (дата обращения: 06.02.2025)
- 3. Маннхайм Т., Бергер Н. Удобрение культур стабилизированными азотными удобрениями // Международный сельскохозяйственный журнал. 2015. № 3. С. 28-30. EDN: RXSJDO
- 4. Pan B., Lam S.K., Mosier A., Luo Y. et al. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. *Agriculture, Ecosystems & Environment.* 2016;232:283-289. https://doi.org/10.1016/j.agee.2016.08.019
- 5. Rochette P., MacDonald J.D., Angers D.A., Chantigny M.H. et al. Banding of urea increased ammonia volatilization in a dry acidic soil. *Journal* of *Environmental Quality*. 2009;38(4):1383-1390. https://doi.org/10.2134/jeq2008.0295
- 6. Визирская М.М., Аканова Н.И., Мамедов Г.М. Эффективность различных форм азотных удобрений в условиях неустойчивого увлажнения // Международный сельскохозяйственный журнал. 2020. № 3. С. 9-12. https://doi.org/10.24411/2587-6740-2020-13040
- 7. Завалин А.А., Благовещенская Г.Г., Чернова Л.С., Шмырева Н.Я. Управление азотным питанием растений в почве // *Агрохимический вестник*. 2012. № 4. С. 38-40. EDN: PBEOKZ
- 8. Engel R., Romero C., Jones C. Ammonia loss and fertilizer ¹⁵N recovery in no-till winter wheat following broadcast urea application. *Crops & Soils*. 2017;50 (4):30-33. https://doi.org/10.2134/cs2017.50.0406
- 9. Abalos D., Jeffery S., Sanz-Cobena A., Guardia G. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. *Agriculture*, *Ecosystems & Environment*. 2014;189:136-144. https://doi.org/10.1016/j.agee.2014.03.036
- 10. Linquist B.A., Liu L.J., van Kessel C., van Groenigen K.J. Enhanced efficiency nitrogen fertilizers for rice systems: meta-analysis of yield and nitrogen uptake. *Field Crops Research*. 2013;154:246-254. https://doi.org/10.1016/j.fcr.2013.08.014
- 11. Pasda G., Hähndel R., Zerulla W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. *Biology and Fertility of Soils*. 2001;34:85-97. https://doi.org/10.1007/s003740100381
- 12. Trenkel M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. Paris, France: International Fertilizer Industry Association (IFA), 2010:163.
- 13. Лапушкин В.М., Игралиев Ф.Г., Лапушкина А.А., Торшин С.П. и др. Эффективность новых форм NPK-удобрений с замедленным и регулируемым высвобождением питательных веществ при выращивании

- 2. International Fertilizer Association (IFA). URL: https://www.fertilizer.org/ (accessed: April 06, 2025)
- 3. Mannheim T., Berger N. Fertilizing crops with stabilized nitrogen fertilizers. *Mezhdunarodnyi sel'skokhozyaistvennyi zhurnal*. 2015;(3):28-30. (In Russ.))
- 4. Pan B., Lam S.K., Mosier A., Luo Y. et al. Ammonia volatilization fromsynthetic fertilizers and its mitigation strategies: a global synthesis. *Agriculture, Ecosystems & Environment* 2016;232:283-289. https://doi.org/10.1016/j.agee.2016.08.019
- 5. Rochette P., MacDonald J.D., Angers D.A., Chantigny M.H. et al. Banding of urea increased ammonia volatilization in a dry acidic soil. *Journal of Environmental Quality*. 2009;38(4):1383-1390. https://doi.org/10.2134/jeq2008.0295
- 6. Vizirskaya M.M., Akanova N.I., Mamedov G.M. Effectiveness of various forms of nitrogen fertilizers in conditions of unstable hydration. *Mezhdunarodnyi sel'skokhozyaistvennyi zhurnal.* 2020;(3):9-12. (In Russ.) https://doi.org/10.24411/2587-6740-2020-13040
- 7. Zavalin A.A., Blagoveshchenskaya G.G., Chernova L.S., Shmyreva N.Ya. Management of plant nitrogen nutrition in soil. *Agrochemical Herald*. 2012;(4):38-40. (In Russ.)
- 8. Engel R., Romero C., Jones C. Ammonia loss and fertilizer ¹⁵N recovery in no-till winter wheat following broadcast urea application. *Crops & Soils*. 2017;50 (4):30-33. https://doi.org/10.2134/cs2017.50.0406
- 9. Abalos D., Jeffery S., Sanz-Cobena A., Guardia G. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. *Agriculture*, *Ecosystems & Environment*. 2014;189:136-144. https://doi.org/10.1016/j.agee.2014.03.036
- Linquist B.A., Liu L.J., van Kessel C., van Groenigen K.J. Enhanced efficiency nitrogen fertilizers for rice systems: meta-analysis of yield and nitrogen uptake. *Field Crops Research*. 2013;154:246-254. https://doi.org/10.1016/j.fcr.2013.08.014
- 11. Pasda G., Hähndel R., Zerulla W. Effect of fertilizers with the new nitrification inhibitor DMPP (3,4-dimethylpyrazole phosphate) on yield and quality of agricultural and horticultural crops. *Biology and Fertility of Soils*. 2001;34:85-97. https://doi.org/10.1007/s003740100381
- 12. Trenkel M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. Paris, France: International Fertilizer Industry Association (IFA), 2010:163.
- 13. Lapushkin V.M., Igraliev F.G., Lapushkina A.A., Torshin S.P et al. Efficiency of new forms of NPK-fertilizers with delayed and controlled release of nutrients when growing spring wheat on sod-podzolic

- яровой пшеницы на дерново-подзолистой почве // *Агрохимия*. 2023. № 2. С. 29-35. https://doi.org/10.31857/S0002188123020096
- 14. Козел Е.Г. Получение капсулированных с ингибиторами форм мочевины и их влияние на активность уреазы и содержание азота в почве // Инновации и инвестиции. 2019. № 10. С. 221-225. EDN: EOHSUT
- 15. Козел Е.Г. Эффективность применения медленнодействующих форм мочевины на выщелоченных черноземах Северной лесостепи Тюменской области // Инновации и инвестиции. 2019. № 11. С. 191-195. EDN: MICENT
- 16. Патент 2776275 С1 (Российская Федерация): C05G 3/40. Способ получения удобрений с замедленным и контролируемым высвобождением питательных веществ / А.М. Норов, Д.А. Пагалешкин, П.С. Федотов, В.В. Соколов и др., 2022. EDN: FGZDKC
- 17. Раджабов А.К., Никитенко А.А., Лапушкин В.М. Особенности роста и питания саженцев яблони сорта Орлик в зависимости от способа выращивания и состава субстрата // Известия Тимирязевской сельскохозяйственной академии. 2017. № 6. С. 5-15. https://doi.org/10.26897/0021-342X-2017-6-5-15
- 18. Ромодина Л.В., Волобуева В.Ф., Лапушкин В.М. Комплексная диагностика питания растений: Учебное пособие. М.: Изд-во РГАУ-МСХА, 2015. 238 с. EDN: TZNTVH
- 19. Методика фотометрической диагностики азотного питания зерновых и других культур / Под ред. академика Россельхозакадемии В.Г. Сычева. М.: ВНИИА, 2010. 32 с. EDN: UDUGZF

Сведения об авторах

- Дарья Андреевна Баюрина, студент 2 курса магистратуры, ФГБОУ ВО Российский государственный аграрный университет МСХА имени К.А. Тимирязева; 127434, Российская Федерация, г. Москва, ул. Тимирязевская, 49; e-mail: 0864579@mail.ru
- Всеволод Михайлович Лапушкин, доцент, канд. биол. наук, ФГБОУ ВО Российский государственный аграрный университет МСХА имени К.А. Тимирязева; 127434, Российская Федерация, г. Москва, ул. Тимирязевская, 49; e-mail: lapushkin@rgau-msha.ru; https://orcid.org/0000-0002-9773-2077

Статья поступила в редакцию 15.02.2025 Одобрена после рецензирования 13.03.2025 Принята к публикации 20.03.2025

- soil. *Agrohimia*. 2023;2:29-35. (In Russ.) https://doi.org/10.31857/S0002188123020096
- 14. Kozel E.G. Preparation of urea forms encapsulated with inhibitors and their effect on urease activity and nitrogen content in soil. *Innovation & Investment*. 2019;10:221-225. (In Russ.)
- 15. Kozel E.G. Efficiency of application of slow-acting forms of urea on leached chernozems of the Northern forest-steppe of the Tyumen region. *Innovation & Investment*. 2019;11:191-195. (In Russ.)
- 16. Patent 2776275 C1 (Russian Federation): C05G 3/40. Method for obtaining fertilizers with delayed and controlled release of nutrients. Norov A.M., Pagaleshkin D.A., Fedotov P.S., Sokolov V.V. et al., 2022. (In Russ.)
- 17. Radzhabov A.K., Nikitenko A.A., Lapushkin V.M. Characteristics of growth and nutrition of apple seedlings (the Orlik variety) depending on cultivation methods and substrate composition. *Izvestiya of Timiryazev Agricultural Academy*. 2017;6:5-15. (In Russ.) https://doi.org/10.26897/0021-342X-2017-6-5-15
- 18. Romodina L.V., Volobueva V.F., Lapushkin V.M. Complex diagnostics of plant nutrition: a study guide. Moscow, Russia: Russian State Agrarian University-Moscow Agricultural Academy named after K.A. Timiryazev, 2015:196. (In Russ.)
- 19. Methodology of photometric diagnostics of nitrogen nutrition of grain and other crops. Ed. by Academician of the Russian Academy of Agricultural Sciences V.G. Sychev. Moscow, Russia: VNIIA, 2010:32. (In Russ.)

Information about the authors

- Vsevolod M. Lapushkin, CSc (Bio), Associate Professor, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy; 49 Timiryazevskaya St., Moscow, 127434, Russian Federation; e-mail: lapushkin@rgau-msha.ru. https://orcid.org/0000-0002-9773-2077
- Daria A. Bayurina, 2nd year Master's student, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy; 49 Timiryazevskaya St., Moscow, 127434, Russian Federation; e-mail: 0864579@mail.ru

The article was submitted to the editorial office February 15, 2025 Approved after reviewing March 13, 2025 Accepted for publication March 20, 2025