Ecogeochemical features of ampelocoenoses as objects for soil-ecological monitoring
https://doi.org/10.26897/2949-4710-2024-2-4-30-45
Abstract
The article analyzes the peculiar ecogeochemical features of vineyards as an object of soil-ecological monitoring on the example of the authors’ own research, conducted in 2021-2024 in a number of wineries in the south-western part of Crimea and in the Fruška Gora district of the Autonomous Province of Vojvodina, Republic of Serbia. Considering the pronounced manifestation of environmental risks and the need to apply integrated methodological approaches to systems analysis of problematic environmental situations, it is proposed to supplement the classical program of soil-ecological surveys with ecogeochemical and ecotoxicological studies with the identification of limiting indicators of soil contamination of ampelocoenoses and assessment of risks of migration of pollutants in the system “soil – vine – products of viticulture and wine-making”. A diagnostic tool for the early detection of negative changes in vineyard agroecosystems can be the determination of soil biological activity through soil respiration indicators and ecophysiological indices calculated on their basis, demonstrating the current status of the soil microbiome.
About the Authors
I. V. AndreevaRussian Federation
Irina V. Andreeva, CSc (Bio), Associate Professor, Associate Professor at the Department of Ecology
49 Timiryazevskaya St., Moscow, 127434
V. V. Gabechaya
Russian Federation
Valeriya V. Gabechaya, Assistant at the Department of Ecology
49 Timiryazevskaya St., Moscow, 127434
A. A. Pivazyan
Russian Federation
Anri А. Pivazyan, 4th year student of the Department of Ecology
49 Timiryazevskaya St., Moscow, 127434
D. V. Morev
Russian Federation
Dmitriy V. Morev, CSc (Bio), Associate Professor at the Department of Ecology
49 Timiryazevskaya St., Moscow, 127434
I. I. Vasenev
Russian Federation
Ivan I. Vasenev, DSc (Bio), Professor, Professor at the Department of Ecology
49 Timiryazevskaya St., Moscow, 127434
References
1. Candiago S., Winkler K., Giombini V. et al. An ecosystem service approach to the study of vineyard landscapes in the context of climate change: a review. Sustainability Science. 2022;18(4):1-17. https://doi.org/10.1007/s11625-022-01223-x
2. Giffard B., Winter S., Guidoni S., Nicolai A. et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Frontiers in Ecology and Evolution. 2022;10:850272. https://doi.org/10.3389/fevo.2022.850272
3. Oliveira M., Ribeiro J. The cultural landscape paradigm: conservation approaches and tools – the case of the Pico Island vineyard culture, Azores Portugal. The International Journal of Design in Society. 2013;6(3):129-147. https://doi.org/10.18848/2325-1328/CGP/v06i03/38511
4. Fraga H., Malheiro A.C., Moutinho-Pereira J. et al. An overview of climate change impacts on European viticulture. Food and Energy Security. 2012;1(2):94-110. https://doi.org/10.1002/fes3.14
5. Azorín P.R., García J.G. The productive, economic, and social efficiency of vineyards using combined drought-tolerant rootstocks and efficient low water volume deficit irrigation techniques under Mediterranean semiarid conditions. Sustainability. 2020;12(5):1930. https://doi.org/10.3390/su12051930
6. Marlowe B., Bauman M. Terroir Tourism: Experiences in Organic Vineyards. Beverages. 2019;5(2):30. https://doi.org/10.3390/beverages5020030
7. Cross R., Plantinga A., Stavins R. Terroir in the New World: Hedonic Estimation of Vineyard Sale Prices in California. Journal of Wine Economics. 2017;12(3):282-301. https://doi.org/10.1017/jwe.2017.27
8. Cruz-Silva A., Laureano G., Pereira M., Dias R. et al. A New Perspective for Vineyard Terroirs Identity: Looking for Microbial Indicator Species. Microorganisms. 2023;11(3):672. https://doi.org/10.3390/microorganisms11030672
9. Schmidtke L., Bastian S., Bindon K., Bonada M. et al. Exploring Interactions Between Vineyard Performance, Grape and Wine Composition and Subregional Boundaries – The Terroir of Barossa Shiraz. Australian Journal of Grape and Wine Research. 2024;1:2622516. https://doi.org/10.1155/ajgw/2622516
10. Visconti F., López R., Olego M.Á. The Health of Vineyard Soils: Towards a Sustainable Viticulture. Horticulturae. 2024;10(2):154. https://doi.org/10.3390/horticulturae10020154
11. Andrés P., Doblas-Miranda E., Silva-Sanchez A., Mattana S. Physical, Chemical, and Biological Indicators of Soil Quality in Mediterranean Vineyards under Contrasting Farming Schemes. Agronomy. 2022;12(11). https://doi.org/10.3390/agronomy12112643
12. Pham N., Babcsanyi I., Farsang A. Soil contamination and ecological risk of heavy metals in alkaline vineyard soil. Conference: EGU General Assembly. May 4 – May 8, 2020. Vienna, Austria: EGU2020-1587, 2020. https://doi.org/10.5194/egusphere-egu2020-1587
13. Gabechaya V.V., Andreeva I.V., Morev D.V. Comparative analysis of factors limiting the functioning of the soil microbiome during grape cultivation under the conditions of the Southern coast of Crimea and the Autonomous Province of Vojvodina, Republic of Serbia. AgroEcoInfo. 2023;6(60). (In Russ.) https://doi.org/10.51419/202136628
14. Sharma P., Singh A., Kahlon C.S., Brar A.S. et al. The role of cover crops towards sustainable soil health and agriculture – a review paper. American Journal of Plant Sciences. 2018;9:1935-1951. https://doi.org/10.4236/ajps.2018.99140
15. Rawnsley B. Assessment of soil health in vineyards. Acta Horticulturae. 2014;1018:417-423. https://doi.org/10.17660/ActaHortic.2014.1018.45
16. Kenderessy P., Lieskovsky J. Impact of the soil erosion on soil properties along a slope catena-case study Horný Ohaj Vineyards, Slovakia. Carpathian Journal of Earth and Environmental Sciences. 2014;9:143-152.
17. Pijl A., Wang W., Straffelini E., Tarolli P. Soil and water conservation in terraced and non-terraced cultivations a massive comparison of 50 vineyards. Land Degradation & Development. 2021;33:596-610. https://doi.org/10.1002/ldr.4170
18. Faucher M., Grellier S., Chaudron C., Jean-Louis J. et al. Mediterranean vineyard soil seed bank characterization along a slope/disturbance gradient: opportunities for land sharing. Agriculture Ecosystems & Environment. 2024;361:108821. https://doi.org/10.1016/j.agee.2023.108821
19. Bortoluzzi E.C., Korchagin J., Moterle D.F., Rheinheimer dos Santos D. et al. Accumulation and precipitation of Cu and Zn in a centenarian vineyard. Soil Science Society of America Journal. 2019:83:492-502. https://doi.org/10.2136/sssaj2018.09.0328
20. Prosdocimi M., Cerdà A., Tarolli P. Soil water erosion on Mediterranean vineyards: A review. Catena. 2016;141:1-21. https://doi.org/10.1016/j.catena.2016.02.010
21. Ha Nhung P.T., Viet N.Q. Assessing the Impact of Erosion and Farming Practices on the Spatial Distribution of Topsoil Characteristics in a Sloping Vineyard Using an Open-source QGIS Software. VNU Journal of Science: Earth and Environmental Sciences. 2023;39(4):91-101. https://doi.org/10.25073/2588-1094/vnuees.5016
22. Jurisio A., Ivica K., Zgorelec Z., Kvaternjak I. Influence of water erosion on copper and sulphur distribution in vineyard soils. Journal of Environmental Protection and Ecology. 2012;13:880-889.
23. Rocha G., Lini R., Barbosa F., Batista B. et al. Exposure to heavy metals due to pesticide use by vineyard farmers. International Archives of Occupational and Environmental Health. 2014;88:875-880. https://doi.org/10.1007/s00420-014-1010-1
24. Lorenzoni P., Valboa G., Papini R., Paone R. et al. Soil Copper and Zinc Accumulation and Bioavailability under a Long Term Vineyard Cultivation in South Italy. Italian Journal of Agronomy. 2007;2(1):31-39. https://doi.org/10.4081/IJA.2007.31
25. Brunetto G., Ferreira P., Melo G., Ceretta C. et al. Heavy metals in vineyards and orchard soils. Revista Brasileira de Fruticultura. 2017;39(2):263. https://doi.org/10.1590/0100-29452017263
26. Romic M., Filipović L., Bakić H., Romić D. Copper Accumulation in Vineyard Soils: Distribution, Fractionation and Bioavailability Assessment. In: Environmental Risk Assessment of Soil Contamination. 2014. https://doi.org/10.5772/57266
27. Rodrigo-Comino J., Brings C., Iserloh T., Casper M.C. et al. Temporal changes in soil water erosion on sloping vineyards in the Ruwer-Mosel Valley. The impact of age and plantation works in young and old vines. Journal of Hydrology and Hydromechanics. 2017;65(4):402-409. https://doi.org/10.1515/johh-2017-0022
28. Kopittke P.M., Blamey F.P.C., Menzies N.W. Toxicities of soluble Al, Cu, and La include ruptures to rhizodermal and root cortical cells of cowpea. Plant and Soil. 2007;303:217-227. https://doi.org/10.1007/s11104-007-9500-5
29. Majzlan J., Zittlau A.H., Grevel K.-D., Schliesser J. et al. Thermodynamic properties and phase equilibria of the secondary copper minerals libethenite, olivenite, pseudomalachite, kröhnkite, cyanochroite, and devilline. The Canadian Mineral. 2015;53:937-960. https://doi.org/10.3749/canmin.1400066
30. Ninkov J., Paprić Đ., Sekulić P., Zeremski-ŠkorićInstitute T. et al. Copper content of vineyard soils at Sremski Karlovci (Vojvodina Province, Serbia) as affected by the use of copper-based fungicides. International Journal of Environmental Analytical Chemistry. 2012;92(5):592-600. http://dx.doi.org/10.1080/03067310903428743
31. Lisetskiy F.N. Geochemical features of old-arable soils in the areas of ancient land use of Crimea (on the example of the environs of Evpatoria). Vserossiyskaya nauchnaya konferentsiya “Geokhimiya landshaftov (k 100-letiyu A.I. Perelmana)”. Moscow, Russia: Geograficheskiy fakultet, 2016:326-329. (In Russ.)
32. Wightwick A.M., Mollah M.R., Partington D.L., Allinson G. Copper fungicide residues in Australian vineyard soils. Journal of Agricultural and Food Chemistry. 2008;56:2457-2464. https://doi.org/10.1021/jf0727950
33. Peralta E., Perez G., Ojeda G., Alcañiz J.M. et al. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils. Science of The Total Environment. 2020;726:138670. https://doi.org/10.1016/j.scitotenv.2020.138670
34. Michaud A., Bravin M., Galleguillos M., Hinsinger P. Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant and Soil. 2007;298:99-111. https://doi.org/10.1007/s11104-007-9343-0
35. Gabechaya V., Andreeva I., Morev D., Yaroslavtsev A. et al. Exploring the Influence of Diverse Viticultural Systems on Soil Health Metrics in the Northern Black Sea Region. Soil Systems. 2023;7(3):73. https://doi.org/10.3390/soilsystems7030073
36. Colautti A., Civilini M., Contin M., Celotti E. et al. Organic vs. conventional: impact of cultivation treatments on the soil microbiota in the vineyard. Frontiers in Microbiology. 2023;14. https://doi.org/14.10.3389/fmicb.2023.1242267
37. Castellini A., Mauracher C., Troiano S. An overview of the biodynamic wine sector. International Journal of Wine Research. 2017;9:1-11. https://doi.org/10.2147/IJWR.S69126.06
38. Botelho R., Roberti R., Tessarin P., Garcia-Mina J.M. et al. Physiological responses of grapevines to biodynamic management. Renewable Agriculture and Food Systems. 2015;1:1-12. https://doi.org/10.1017/S1742170515000320
39. Milićević T., Aničić Urošević M., Relic D., Jovanovićet G. et al. Environmental pollution influence to soil- plant-air system in organic vineyard: bioavailability, environmental, and health risk assessment. Environmental Science and Pollution Research. 2021;28:3361-3374. https://doi.org/10.1007/s11356-020-10649-8
40. Hendgen M., Döring J., Stöhrer V. et al. Spatial Differentiation of Physical and Chemical Soil Parameters under Integrated, Organic, and Biodynamic Viticulture. Plants. 2020;9:1361. https://doi.org/10.3390/plants9101361
41. Beni C., Rossi G. Conventional and organic farming: estimation of some effects on soil, copper accumulation and wine in Central Italy vineyard. Agrochimica – Pisa. 2009;53:145-159.
42. Andreeva I.V., Gabechaya V.V., Morev D.V., Taller E.B. Ecological and Geochemical Assessment of Heavy Metal Accumulation in Soil of Different-Aged Ampelocoenoses in the Slope Landscape of the Fruška Gora Mountain Range, Republic of Serbia. Timiryazev Biological Journal. 2023;1(3):13-28. (In Russ.) https://doi.org/10.26897/2949-4710-2023-3-13-28
43. Finney D.M., Buyer J.S., Kaye J.P. Living cover crops have immediate impacts on soil microbial community structure and function. Journal of Soil and Water Conservation. 2017;724:361-373. https://doi.org/10.2489/jswc.72.4.361
44. Linares R., de la Fuente M., Junquera P., Lissarrague J.R. et al. Effects of Soil Management in Vineyard on Soil Physical and Chemical Characteristics. BIO Web Conference. 2014;3(4):01008. https://doi.org/10.1051/bioconf/20140301008
45. Bernaschina Y., Fresia P., Garaycochea S., Leoni C. Permanent cover crop as a strategy to promote soil health and vineyard performance. Environmental Sustainability. 2023;6:243-258. https://doi.org/10.1007/s42398-023-00271-y
Review
For citations:
Andreeva I.V., Gabechaya V.V., Pivazyan A.A., Morev D.V., Vasenev I.I. Ecogeochemical features of ampelocoenoses as objects for soil-ecological monitoring. Timiryazev Biological Journal. 2024;2(4):30-45. (In Russ.) https://doi.org/10.26897/2949-4710-2024-2-4-30-45