Use of genetic engineering to improve radio tolerance of plants under space flight conditions
https://doi.org/10.26897/2949-4710-2024-2-4-15-29
Abstract
The article presents a potential solution to the problem of increasing the radiation resistance of plants in their interaction with galactic cosmic radiation by transferring prokaryotic genes of DNA repair enzymes and regulatory genes of repair pathways into plants. In particular, the possibility of using Deinococcus radiodurans as a donor of the necessary genes is being considered due to the high radioresistance of this bacterium. We propose to apply several D. radiodurans genes (uvrD, irrE and pprM) for this purpose due to the positive experience of their use. The use of the irrE gene for plant transformation has already been proven, while the use of the uvrD and pprM genes requires additional research due to the presence of experiments only on prokaryotes. At the same time, it should be noted that among plant proteins there are homologues of Escherichia coli UvrD helicase, while plant homologues of this enzyme contain the same conserved domains as bacterial UvrD helicase. This can facilitate the work of this prokaryotic protein, which will be synthesized in plants obtained by genetic engineering. Due to the prevailing negative effects of cosmic radiation on plants, the use of this method is promising and opens up new opportunities for creating varieties resistant to this factor.
About the Authors
I. V. ChuvinovaRussian Federation
Irina V. Chuvinova, CSc (Ed), Assistant Professor at the Department of Medical Biology
33 Internatsionalnaya St., Tambov 392036
V. V. Belova
Russian Federation
Valeria V. Belova, Senior Laboratory Assistant at the Department of Medical Biology
33 Internatsionalnaya St., Tambov 392036
References
1. Lebedev V.M., Spassky A.V., Zagirdinova E.F., Platova N.G. et al. Study of the simultaneous exposure of lettuce seeds to ionizing radiation and hypomagnetic conditions: application of a 120-cm cyclotron. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya. 2020;84(4):373-377. (In Russ.) https://doi.org/10.31857/S0367676520040171
2. Zotov A.V., Kavelenova L.M., Kurganskaya L.V., Gorelov Yu.N. The effect of the exposition on board of the spaceship Foton M № 4 on seed germination and root growth of seedlings from the test object allium seeds. Vestnik molodykh uchenykh i spetsialistov Samarskogo gosudarstvennogo universiteta. 2015;2(7):69-73. (In Russ.)
3. Agapov A.A., Kulbachinskiy A.V. Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radiodurans. Biokhimy. 2015;80(10):1461-1779. (In Russ.)
4. Kobyalko V.O., Pimenov E.P. Effect of radiation on microorganisms and sensitivity of different taxonomic groups to radiation. In: Aktualnye voprosy selskokhozyaystvennoy radiobiologii: Trudy Federalnogo gosudarstvennogo byudzhetnogo nauchnogo uchrezhdeniya “Vserossiyskiy nauchno-issledovatelskiy institut radiologii i agroekologii” (FGBNU VNIIRAE). Obninsk, Russia: Russian Institute of Radiology and Agroecology of National Research Centre “Kurchatov Institute”, 2019:119-130. (In Russ.)
5. Mikhel I.M., Khaliluev M.R. Transgenic tomato plants (Solanum lycopersicum L.): direct methods of gene transfer and factors affecting transformation efficiency (review). Agricultural Biology. 2022;57(3):518-541. (In Russ.) https://doi.org/10.15389/agrobiology.2022.3.518rus
6. Tat’kov S.I., Deineko E.V., Furman D.P. Prospects for designing a new generation of anti-tuberculosis vaccines. Vavilov Journal of Genetics and Breeding. 2011;15(1):114-129. (In Russ.)
7. Monakhova D.D., Shchegoleva V.A., Samsonov I.Yu., Romanteeva Yu.V. et al. Prospects for creating plant-based vaccines. Modern Science. 2022;1-1:2015-2021. (In Russ.)
8. Bakhlanova I.V., Baitin D.M. Recombinogenic potential of RecA protein: evolutionary opportunities and consequences for bacteria cell. Tsitologiya. 2016;58(11):817-824. (In Russ.)
9. Verbenko V.N., Kuznetsova L.V., Krupyan E.P., Shalguev V.I. Expression of recA gene of Deinococcus radiodurans in Escherichia coli cells. Genetica. 2009;45(10):1353-1360. (In Russ.)
10. Gulevich E.P., Kuznetsova L.V., Kil Y.V., Verbenko V.N. Peculiarities of the Deinococcus radiodurans r1 uvrD coded DNA helicase revealed in Escherichia coli k-12 cells. Molekularnaa Genetika Mikrobiologia i Virusologia. 2020;35(1):32-37. (In Russ.) https://doi.org/10.17116/molgen20203801134
11. Tuteja R., Tuteja N. Analysis of DNA repair helicase UvrD from Arabidopsis thaliana and Oryza sativa. Plant Physiology and Biochemistry. 2013;71:254-260. https://doi.org/10.1016/j.plaphy.2013.07.022
12. Zhang Y., Ma R., Zhao Z., Zhou Z. et al. irrE, an exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stress. Journal of Microbiology and Biotechnology. 2010;20(7):1156-1162. https://doi.org/10.4014/jmb.0912.12036
13. Zhao P., Zhou Z., Zhang W., Lin M. et al. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock. Molecular BioSystems. 2015;11(4):1165-1171. https://doi.org/10.1039/c5mb00080g
14. Park S.H., Singh H., Appukuttan D., Jeong S. et al. PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans, Confers Oxidative Stress Tolerance to Escherichia coli. Frontiers in Microbiology. 2017;7:2124. https://doi.org/10.3389/fmicb.2016.02124
15. Pan J., Wang J., Zhou Z., Yan Y. et al. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One. 2009;4(2): e4422. https://doi.org/10.1371/journal.pone.0004422
16. Shi Y., Wu W., Qiao H., Yue L. et al. The protein PprI provides protection against radiation injury in human and mouse cells. Scientific Reports. 2016;6:26664. https://doi.org/10.1038/srep26664
17. Wen L., Yue L., Shi Y., Ren L. et al. Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes. Oncotarget. 2016;7(13):15339-15355. https://doi.org/10.18632/oncotarget.8137
18. Chen T.T., Hua W., Zhang X.Z., Wang B.H. et al. The effects of pprI gene of Deinococcus radiodurans R1 on acute radiation injury of mice exposed to 60Co γ-ray radiation. Oncotarget. 2017;8(2):2008-2019. https://doi.org/10.18632/oncotarget.13893
19. Yurov S.S., Cozhocaru A.F., Dmitrievskiy I.M., Nechitailo G.S. Genetics-physiologal and physico-chemical studies of Lycopersicon esculentum Mill., growing from seeds, exposed to irradiation during the cosmic flight. Sovremennye problemy nauki i obrazovaniya. 2008;5:18-24. (In Russ.)
20. Shagimardanova E.I., Gusev O.A., Sychev V.N., Levinskikh M.A. et al. Stress defense genes expression of barley Hordeum vulgare grown onboard international space station. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta. Seriya: Estestvennye nauki. 2010;152(1):166-173. (In Russ.)
21. Abrashkin V.I., Avdeeva E.V., Kurkin V.A., Ryzhov V.M. et al. Sconcerning the primary results of space experiment with the higher plants seeds exposed on spacecraft “Bion-M” № 1. Bulletin of Samara State University. Natural Science Series. 2013;9-1(110):140-150. (In Russ.)
22. Gorelov Yu.N, Kavelenova L.M, Kurganskaya L.V, Rozno S.A. et al. To the primary results of space experiment with seeds of natural flora rare plants on the “Bion-M” No 1 spacecraft. Izvestiya Samarskogo nauchnogo tsentra RAN. 2015;17(6-1):294-298. (In Russ.)
23. Petrashova D.A., Belisheva N.K. The cytogenetic effects of the cosmic rays high-energy neutron component in the Allium сера meristematic cells. Trudy Kolskogo nauchnogo tsentra RAN. 2015;6(32):41-49. (In Russ.)
24. Galaburda A.Ye., Gerich R.V., Norenko Ye.Ye., Pashkov A.N. et al. Some aspects of the influence of space flight and space factors on higher plants. Molodezhniy innovatsionniy vestnik. 2017;6(2):255-256. (In Russ.)
25. Kharchenko V.A., Golubkina N.А., Skrypnik L.N., Murariu O.C. et al. Peculiarities of biochemical and mineral composition of lettuce Lactuca sativa L. grown from seeds after long-term storage in the international space station. Vegetable Crops of Russia. 2024;2:37-42. (In Russ.) https://doi.org/10.18619/2072-9146-2024-2-37-42
26. Levinskikh M.A., Nefedova E.L., Signalova O.B., Sychev V.N. et al. Influence of extreme environmental conditions on plant growth and development (the experience of the scientific research center of the Russian Federation – IMBP RAS on plant cultivation on board orbiting spacecraft and at the Vostok antarctic station). IV Mezhdunarodnaya nauchno-prakticheskoaya konferentsiya, posvyashchennaya sokhraneniyu nauchnogo naslediya i razvitiyu idey A.L. Chizhevskogo ‘A.L. Chizhevskiy. Vklad v nauku i kul’turu’. February 15-17, 2024. Kaluga, Russia: IP Streltsov I.A. (Eydos), 2024:93-96. (In Russ.)
27. Zhang Y., Richards J.T., Feiveson A.H., Richards S.E. et al. Response of Arabidopsis thaliana and Mizuna Mustard Seeds to Simulated Space Radiation Exposures. Life (Basel, Switzerland). 2022;12(2):144. https://doi.org/10.3390/life12020144
28. Kuang Q., He C., Huang H., Jiang H. Multi-omic analysis on the molecular mechanisms of rapid growth in ‘Deqin’ alfalfa after space mutagenesis. BMC Plant Biology. 2025;25(1):34. https://doi.org/10.1186/s12870-025-06060-5
29. Dixit A.R., Meyers A.D., Richardson B., Richards J.T. et al. Simulated galactic cosmic ray exposure activates dose-dependent DNA repair response and down regulates glucosinolate pathways in arabidopsis seedlings. Frontiers in Plant Science. 2023;14:1284529. https://doi.org/10.3389/fpls.2023.1284529
Review
For citations:
Chuvinova I.V., Belova V.V. Use of genetic engineering to improve radio tolerance of plants under space flight conditions. Timiryazev Biological Journal. 2024;2(4):15-29. (In Russ.) https://doi.org/10.26897/2949-4710-2024-2-4-15-29