Preview

Timiryazev Biological Journal

Advanced search

Morphological and functional characteristics of lymphoid tissue in the midgut of sturgeon fish species: a case study of the sterlet (Acipenser ruthenus)

https://doi.org/10.26897/2949-4710-2025-3-1-4-01

Abstract

The paper presents the results of the study of the histological structure and qualitative composition of cellular elements of the haematopoietic tissue associated with the midgut of the sterlet (Acipenser ruthenus). It was shown that the lymphoid tissue of the sterlet intestine contains islands of lymphoid tissue bounded by reticular tissue/mucosa, as well as lymphocytes associated with the mucosa (intraepithelial) and with the intestinal mucosal plate (lamina propria lymphocytes). Eosinophilic cells were also found in the tissue. The most common cell types in the intestinal mucosa were intraepithelial lymphocytes (8.9 cell/100 μm) and lamina propria lymphocytes (7.1 cell/100 μm). Smears of sterlet intestinal lymphoid tissue showed the following lymphoid cell types (in descending order): lymphocytes (64.4%), prolymphocytes (6.5%), plasmocytes (3.9%), lymphoblasts (2.9%) and proplasmocytes (1.5%). Morphometric changes in a number of lymphoid cells in lymphoid tissue smears were expressed as a decrease in the size of the nucleus and cytoplasm. The morphology, qualitative cell composition and functional characteristics allowed the classification of the lymphoid tissue of the sterlet intestine as intestine-associated lymphoid tissue. The results obtained can be used to assess the immune status of cultured fish, to determine the effectiveness of immunomodulatory feeds and feed additives, to monitor and diagnose wild fish populations, and to contribute to the understanding of the evolution of ray-finned fish.

About the Authors

N. I. Kochetkov
K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University)
Russian Federation

Nikita I. Kochetkov, Junior Research Associate at the Aquaculture Center

73 Zemlyanoy Val St., Moscow, 109004



D. L. Nikiforov-Nikishin
K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University)
Russian Federation

Dmitry L. Nikiforov-Nikishin, CSc (Bio), Leading Research Associate at the Aquaculture Center

73 Zemlyanoy Val St., Moscow, 109004



K. V. Gavrilin
National Fund for Environmental Protection and Development of the Far North and Equated Localities “Yakutia”
Russian Federation

Kirill V. Gavrilin, DSc (Bio), Director for Biotechnology and Aquaculture Project Development

18 Oktyabrskaya St., Yakutsk, 677027, Republic of Sakha (Yakutia)



A. A. Belinsky
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Anton A. Belinsky, postgraduate student of the Department of Zoology

49 Timiryazevskaya St., Moscow, 127434



References

1. Birstein V.J., Waldman J.R., Bemis W.E. Sturgeon biodiversity and conservation. Springer Science & Business Media. 1997;17:443. https://doi.org/10.1007/0-306-46854-9_2

2. Grushko M.P., Svetasheva D.R. Comparative morphological and physiological characteristics of the organs hematopoesis sturgeons and amphibians in the early stages of development. Trudy VNIRO. 2017;167:12-23. (In Russ.)

3. Gradil A.M., Wright G.M., Wadowska D.W., Fast M.D. Ontogeny of the immune system in Acipenserid juveniles. Developmental & Comparative Immunology. 2014;44(2):303-314. https://doi.org/10.1016/j.dci.2014.01.006

4. Höhne C., Prokopov D., Kuhl H., Du K. et al. The immune system of sturgeons and paddlefish (Acipenseriformes): a review with new data from a chromosome scale sturgeon genome. Reviews in Aquaculture. 2021;13(3):1709-1729. https://doi.org/10.1111/raq.12542

5. Mineev A.K. hematopathology in fishes of the Kuibyshev reservoir. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2016;18(5-1):51-59. (In Russ.)

6. Flerova E.A., Bogdanova A.A., Payuta A.A., Evdokimov E.G., Andreyeva M.I. Hematological indicators of fish of small rivers of the State Nature Reserve “Yaroslavsky”. Trudy VNIRO. 2020;179:78-89. (In Russ.) https://doi.org/10.36038/2307-3497-2020-179-78-89

7. Witeska M., Kondera E., Bojarski B. Hematological and hematopoietic analysis in fish toxicology – a review. Animals. 2023;13(16):2625. https://doi.org/10.3390/ani13162625

8. Alijagic A., Suljevic D. Hemopoiesis in the pronephros of tench, Tinca tinca, Linnaeus 1758 (Teleostei, Cyprinidae): cytochemical identification and cell morphology. Turkish Journal of Veterinary & Animal Sciences. 2016;40(5):548-553. https://doi.org/10.3906/vet-1512-34

9. Liu Y., Xiao Q., Yang S., Zhao L. et al. Characterization of hematopoiesis in Dabry’s sturgeon (Acipenser dabryanus). Aquaculture and fisheries. 2017;2(6):262-268. https://doi.org/10.1016/j.aaf.2017.10.007

10. Grushko M.P. Morpho-physiological of feature hemopoietic at bony of fishes (on an example vobla (Rutilus rutilus caspicus)). Fisheries Issues. 2010;11(2):327-340. (In Russ.)

11. Grushko M.P., Fedorova N.N. Structural and functional organization of some organs of hemopoiesis of bony fishes (by the example of vobla). Oil and Gas Technologies and Environmental Safety. 2008;(3):61-64. (In Russ.)

12. Valova V.N. Reaction of peripheral blood and digestive system of the Amur sturgeon fingerlings on conditions of their wintering in warm-water farm cages. Izvestiya TINRO. 2013;173:259-268. (In Russ.)

13. Wilson J.M., Castro L.F.C. Morphological diversity of the gastrointestinal tract in fishes. Fish physiology. Academic Press. 2010;30:1-55. https://doi.org/10.1016/S1546-5098(10)03001-3

14. Lozhnichenko O.V., Zagriychuk V.P., Gritsishina V.V. Assessment of hormone additives influence on organs of digestive system of Russian sturgeon. Vestnik of Astrakhan State Technical University. Series: Fishing Industry. 2009;(2):54-59. (In Russ.)

15. Gavrilin K.V., Nikiforov-Nikishin D.L., Kochetkov N.I., Smorodinskaya S.V. Histopathology of bony fishes: a monograph. Kursk, Russia: IP Beskrovnyy A.A, 2023:200. (In Russ.)

16. Suvarna S.K., Layton C., Bancroft J.D. Bancroft’s Theory and Practice of Histological Techniques E-Book. Elsevier Health Sciences: Amsterdam, The Netherlands, 2018:672. URL: https://shop.elsevier.com/books/bancrofts-theory-and-practice-of-histological-techniques/suvarna/978-0-7020-6864-5 (accessed: December 01, 2024).

17. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V. et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676-682. https://doi.org/10.1038/nmeth.2019

18. Kochetkov N.I., Nikiforov-Nikishin D.L., Smorodinskaya S.V., Klimuk A.A., Golovacheva N.A. Effects of dietary Lactobacillus brevis 47f on growth performance, hematological and histological parameters of juvenile sterlet (Acipenser ruthenus). Fisheries. 2024;(4):96-107. (In Russ.) https://doi.org/10.36038/0131-6184-2024-4-96-107

19. Ivanova N.T. Atlas of fish blood cells: comparative morphology and classification of blood corpuscles in fish. Moscow, Russia: Legkaya i pishchevaya promyshlennost, 1983:283. (In Russ.)

20. Kondera E. Haematopoiesis in the head kidney of common carp (Cyprinus carpio L.): a morphological study. Fish Physiology and Biochemistry. 2011;37:355-362. https://doi.org/10.1007/s10695-010-9432-5

21. Fijan N. Morphogenesis of blood cell lineages in channel catfish. Journal of Fish Biology. 2002;60(4):999-1014. https://doi.org/10.1111/j.1095-8649.2002.tb02424.x

22. Collan Y., Torkkeli T., Pesonen E., Jantunen E. et al. Application of morphometry in tumor pathology. Analytical and Quantitative Cytology and Histology. 1987;9(2):79-88. https://doi.org/10.1007/978-3-642-74823-3_6

23. Mitchell C.D., Criscitiello M.F. Comparative study of cartilaginous fish divulges insights into the early evolution of primary, secondary and mucosal lymphoid tissue architecture. Fish & Shellfish Immunology. 2020;107:435-443. https://doi.org/10.1016/j.fsi.2020.11.006

24. Yu Y., Wang Q., Huang Z., Ding L. et al. Immunoglobulins, mucosal immunity and vaccination in teleost fish. Frontiers in immunology. 2020;11:567941. https://doi.org/10.3389/fimmu.2020.567941

25. Smorodinskaya S., Kochetkov N., Gavrilin K., Nikiforov-Nikishin D. et al. The Effects of Acute Bisphenol A Toxicity on the Hematological Parameters, Hematopoiesis, and Kidney Histology of Zebrafish (Danio rerio). Animals. 2023;13(23):3685. https://doi.org/10.3390/ani13233685

26. Fomina A.S. Cellular structure of head department of a nephros of the Baikal omul (Coregonus migratorius) in a period of feeding and spawning migration. Vestnik APK Verkhnevolzh’ya. 2016;(3):71-74. (In Russ.)

27. Fournier-Betz V., Quentel C., Lamour F., LeVen A. (Immunocytochemical detection of Ig-positive cells in blood, lymphoid organs and the gut associated lymphoid tissue of the turbot (Scophthalmus maximus). Fish & Shellfish Immunology. 2000;10(2):187-202. https://doi.org/10.1006/fsim.1999.0235

28. Cui Z.W., Zhang X.Y., Wu C.S., Zhang Y.A. et al. Membrane IgM+ plasma cells in grass carp (Ctenopharyngodon idella): Insights into the conserved evolution of IgM+ plasma cells in vertebrates. Developmental & Comparative Immunology. 2020;106:103613. https://doi.org/10.1016/j.dci.2020.103613


Review

For citations:


Kochetkov N.I., Nikiforov-Nikishin D.L., Gavrilin K.V., Belinsky A.A. Morphological and functional characteristics of lymphoid tissue in the midgut of sturgeon fish species: a case study of the sterlet (Acipenser ruthenus). Timiryazev Biological Journal. (In Russ.) https://doi.org/10.26897/2949-4710-2025-3-1-4-01

Views: 58


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-4710 (Online)