Preview

Timiryazev Biological Journal

Advanced search

Optimizing remote sensing-based methodology for drained land monitoring: a case study of the Leningrad Region

https://doi.org/10.26897/2949-4710-2025-3-2-6-02

Abstract

This article addresses the need to improve the methodology for monitoring hydro-reclamation systems. The study aims to justify the use of digital technologies to enhance the monitoring of agricultural land in response to a changing climate. The research was conducted between 2022 and 2024. The subject of the research is a tract of agricultural land – specifically, field 10-0 within the Menkovo Branch, located in the Gatchina District of the Leningrad Region. This land is characterized by excessive moisture and a high groundwater level, necessitating optimization of its hydro-reclamation system. To analyze groundwater levels in the study area, wells were drilled in key locations. Based on reconnaissance photo and video documentation, and statistical groundwater level data, the most representative field for research was selected. Visual analysis and NDVI index analysis corresponding to winter wheat growth stages, combined with groundwater level dynamics, revealed a correlation between elevated groundwater levels and suppressed vegetation. The working hypothesis that monitoring without specifying precise dates is ineffective was supported. Analyzing the efficiency of NDVI data, the study identified optimal monitoring times. Factoring in losses observed in the monitoring data analysis (ranging from 5% to 9%), this targeted monitoring approach is projected to increase yields from 52.7 c/ha to 59.1 c/ha. The estimated total cost of implementing this stage-specific monitoring program throughout the growing season is 128,000 rubles annually

About the Authors

Yuriy G. Bezborodov
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Yuriy G. Bezborodov, DSс (Eng), Associate Professor, Acting Head of the Department of Land Management and Forestry, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy; 49 Timiryazevskaya St., Moscow, 127550, Russian Federation



Alina O. Dorozhkina
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy

Alina O. Dorozhkina, Master's degree student of the Department of Land Management and Forestry, Russian State Agrarian University – Moscow Timiryazev Agricultural Academy; 49 Timiryazevskaya St., Moscow, 127550, Russian Federation



References

1. Prikaz Minsel'hoza Rossii ot 24.12.2015 N 664 (red. ot 19.06.2024) \"Ob utverzhdenii Poryadka osushchestvleniya gosudarstvennogo monitoringa zemel' sel'skohozyajstvennogo naznacheniya\". – Dostup iz spravochno-pravovoj sistemy Konsul'tantPlyus.URL:https://www.consultant.ru/document/cons_doc_LAW_195686

2. Giniyatov I.A. «Monitoring zemel' i ob"ektov nedvizhimosti» // SGUGiT. 2017. [Elektronnyj resurs]. – Rezhim dostupa: https://lib.sgugit.ru/irbisfulltext/2017/17.10.17/2017.

3. Liu, Shengwei, Dailiang Peng, Bing Zhang, Zhengchao Chen, Le Yu, Junjie Chen, Yuhao Pan, Shijun Zheng, Jinkang Hu, Zihang Lou, and et al. 2022. "The Accuracy of Winter Wheat Identification at Different Growth Stages Using Remote Sensing" Remote Sensing 14, no.4:893. URL: https://doi.org/10.3390/ rs14040893.

4. Sishodia, Rajendra P., Ram L. Ray, and Sudhir K. Singh. 2020. "Applications of Remote Sensing in Precision Agriculture: A Review" Remote Sensing 12, no.19:313. URL: https://doi.org/10.3390/rs12193136.

5. Mishurov N.P., Petuhov D.A., Sviridova S.A., Podol'skaya E.E., Truflyak E.V. Effektivnost' primeneniya elementov koordinatnogo zemledeliya pri proizvodstve ozimoj pshenicy // Tekhnika i oborudovanie dlya sela. - 2022. -№ 8 (302). -S.44-48. https://doi.org/10.33267/2072-9642-2022-8-44-48.

6. Bezborodov, G. A. Sovershenstvovanie metodiki monitoringa solevogo rezhima oroshaemyh zemel' / G. A. Bezborodov, A. G. Bezborodov, Yu. G. Bezborodoe // Melioraciya i vodnoe hozyajstvo. – 2008. – № 6. – S. 29-31. – EDN JXGCSL.

7. Rabochaya dokumentaciya Kapital'nyj remont osushitel'noj seti i kul'turtekhnicheskie raboty na uchastke «Golino» Men'kovskoj opytnoj stancii AFI v Gatchinskom rajone Leningradskoj oblasti – 2020. 123 s.35.

8. Tarkivskij V.E., Ivanov A.B., Petuhov D.A., Bondarenko E.V. Prognozirovanie urozhajnosti ozimoj pshenicy pri pomoshchi sputnikovogo monitoringa // AgroForum. 2023. №2. [Elektronnyj resurs]. – Rezhim dostupa: https://cyberleninka.ru/ article/n/prognozirovanie-urozhaynosti-ozimoy- pshenitsy-pri-pomoschi-sputnikovogo-monitoring/. https://doi.org/10.24412/cl-34984-2023-2-84-87.

9. Spirin, Yu. A. Tendencii i perspektivy razvitiya gidromeliorativnogo kompleksa Slavskogo rajona Kaliningradskoj oblasti / Yu. A. Spirin, V. G. Puntusov // Ovoshchi Rossii. – 2021. – № 2. – S. 86-92. – https://doi.org/10.18619/2072-9146-2021-2-86-92.


Review

For citations:


Bezborodov Yu.G., Dorozhkina A.O. Optimizing remote sensing-based methodology for drained land monitoring: a case study of the Leningrad Region. Timiryazev Biological Journal. 2025;3(2):202532602. (In Russ.) https://doi.org/10.26897/2949-4710-2025-3-2-6-02

Views: 126


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-4710 (Online)